Заголовок:
Комментарий:
Готово, можно копировать.
РЕШУ ЦТ — математика
Вариант № 66503
1.  
i

Ука­жи­те номер ри­сун­ка, на ко­то­ром изоб­ра­же­ны фи­гу­ры, сим­мет­рич­ные от­но­си­тель­но пря­мой l.

1)

2)

3)

4)

5)

1) 1
2) 2
3) 3
4) 4
5) 5
2.  
i

Ис­поль­зуя ри­су­нок, опре­де­ли­те вер­ное утвер­жде­ние и ука­жи­те его номер.

1)  минус 3k мень­ше минус 3t
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: t конец дроби боль­ше дробь: чис­ли­тель: 1, зна­ме­на­тель: k конец дроби
3) 3k боль­ше 3t
4)  дробь: чис­ли­тель: k, зна­ме­на­тель: минус 3 конец дроби боль­ше дробь: чис­ли­тель: t, зна­ме­на­тель: минус 3 конец дроби
5) k боль­ше t
3.  
i

Число 213 яв­ля­ет­ся чле­ном ариф­ме­ти­че­ской про­грес­сии 3, 8, 13, 18, ... Ука­жи­те его номер.

1) 47
2) 39
3) 41
4) 43
5) 45
4.  
i

Све­жие фрук­ты при сушке те­ря­ют a % своей массы. Ука­жи­те вы­ра­же­ние, опре­де­ля­ю­щее массу сухих фрук­тов (в ки­ло­грам­мах), по­лу­чен­ных из 20 кг све­жих.

1)  дробь: чис­ли­тель: 2000, зна­ме­на­тель: a конец дроби
2)  дробь: чис­ли­тель: 20 левая круг­лая скоб­ка 100 минус a пра­вая круг­лая скоб­ка , зна­ме­на­тель: 100 конец дроби
3)  дробь: чис­ли­тель: 2000, зна­ме­на­тель: 100 минус a конец дроби
4)  дробь: чис­ли­тель: 20 левая круг­лая скоб­ка 100 плюс a пра­вая круг­лая скоб­ка , зна­ме­на­тель: 100 конец дроби
5)  дробь: чис­ли­тель: 2000, зна­ме­на­тель: 100 плюс a конец дроби
5.  
i

Даны пары зна­че­ний пе­ре­мен­ных x и y: (5; 3); (10; −2); (−9; 1); (2; 6); (8; 0). Ука­жи­те пару, ко­то­рая НЕ яв­ля­ет­ся ре­ше­ни­ем урав­не­ния x + y  =  8.

1) (5; 3)
2) (10; −2)
3) (−9; 1)
4) (2; 6)
5) (8; 0)
6.  
i

Упро­сти­те вы­ра­же­ние 3 синус левая круг­лая скоб­ка 11 Пи плюс альфа пра­вая круг­лая скоб­ка плюс ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: 15 Пи , зна­ме­на­тель: 2 конец дроби минус альфа пра­вая круг­лая скоб­ка .

1)  минус 2 синус альфа
2)  минус 4 синус альфа
3) 2 синус альфа
4) 4 синус альфа
5) 4 ко­си­нус альфа
7.  
i

Окруж­ность за­да­на урав­не­ни­ем x в квад­ра­те плюс y в квад­ра­те плюс 4y плюс 4=a плюс 4 и про­хо­дит через вер­ши­ну па­ра­бо­лы y=2 минус левая круг­лая скоб­ка 3 минус x пра­вая круг­лая скоб­ка в квад­ра­те . Най­ди­те ра­ди­ус этой окруж­но­сти.

1) 5
2) 25
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 21 конец ар­гу­мен­та
4) 21
5)  ко­рень из: на­ча­ло ар­гу­мен­та: 29 конец ар­гу­мен­та
8.  
i

Среди чисел  ко­рень из 5 ;  ко­рень из 6 ;  ко­рень из: на­ча­ло ар­гу­мен­та: 23 конец ар­гу­мен­та ;  ко­рень из: на­ча­ло ар­гу­мен­та: 29 конец ар­гу­мен­та ;  ко­рень из: на­ча­ло ар­гу­мен­та: 37 конец ар­гу­мен­та ука­жи­те то, ко­то­рое яв­ля­ет­ся ре­ше­ни­ем си­сте­мы не­ра­венств  си­сте­ма вы­ра­же­ний x боль­ше или равно 5,x мень­ше 6. конец си­сте­мы .

1)  ко­рень из 5
2)  ко­рень из 6
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 23 конец ар­гу­мен­та
4)  ко­рень из: на­ча­ло ар­гу­мен­та: 29 конец ар­гу­мен­та
5)  ко­рень из: на­ча­ло ар­гу­мен­та: 37 конец ар­гу­мен­та
9.  
i

На одной сто­ро­не пря­мо­го угла О от­ме­че­ны две точки А и В так, что ОА  =  1,7, OB  =  а, ОА < ОВ. Со­ставь­те фор­му­лу, по ко­то­рой можно вы­чис­лить ра­ди­ус r окруж­но­сти, про­хо­дя­щей через точки А, В и ка­са­ю­щей­ся дру­гой сто­ро­ны угла.

1) r= дробь: чис­ли­тель: a плюс 1,7, зна­ме­на­тель: 2 конец дроби
2) r= дробь: чис­ли­тель: a минус 1,7, зна­ме­на­тель: 2 конец дроби
3) r=a плюс 1,7
4) r= дробь: чис­ли­тель: a плюс 3,4, зна­ме­на­тель: 2 конец дроби
5) r=2a минус 1,7
10.  
i

В пер­вый день ве­ло­си­пе­дист про­ехал 45 км, а во вто­рой день  — на 12% боль­ше, чем в пер­вый. Сколь­ко ки­ло­мет­ров про­ехал ве­ло­си­пе­дист за два дня?

1) 62,2
2) 106,2
3) 50,4
4) 102
5) 95,4
11.  
i

В рав­но­бед­рен­ную тра­пе­цию, пло­щадь ко­то­рой равна  целая часть: 36, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 8 , впи­са­на окруж­ность. Сумма двух углов тра­пе­ции равна 60°. Най­ди­те пе­ри­метр тра­пе­ции.

12.  
i

Най­ди­те наи­боль­шее целое ре­ше­ние не­ра­вен­ства 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 18 пра­вая круг­лая скоб­ка умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка минус x минус 17 пра­вая круг­лая скоб­ка боль­ше 0,32.

13.  
i

В ос­но­ва­нии пря­мой че­ты­рех­уголь­ной приз­мы ABCDA1B1C1D1 лежит тра­пе­ция ABCD, у ко­то­рой ∠C = 90°, BC и AD  — ос­но­ва­ния, BC = CC1. Плос­кость, ко­то­рая про­хо­дит через ребро DC и вер­ши­ну A1 приз­мы, об­ра­зу­ет угол  альфа = арк­тан­генс дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби с плос­ко­стью ос­но­ва­ния (см. рис.) и от­се­ка­ет часть NC1CA1D1D. Если объем приз­мы равен 48, то объем остав­шей­ся части равен … .

14.  
i

Вы­бе­ри­те все вер­ные утвер­жде­ния, яв­ля­ю­щи­е­ся свой­ства­ми не­чет­ной функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , опре­делённой на x при­над­ле­жит левая круг­лая скоб­ка минус бес­ко­неч­ность ; бес­ко­неч­ность пра­вая круг­лая скоб­ка и за­дан­ной фор­му­лой f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =x в квад­ра­те плюс 10x при x\leqslant0.

1.  Функ­ция имеет три нуля.

2.  Функ­ция убы­ва­ет на про­ме­жут­ке [6; 9].

3.  Мак­си­мум функ­ции равен 25.

4.  Ми­ни­маль­ное зна­че­ние функ­ции равно -25.

5.  f левая круг­лая скоб­ка f левая круг­лая скоб­ка 1 пра­вая круг­лая скоб­ка плюс 1 пра­вая круг­лая скоб­ка =0.

6.  Функ­ция при­ни­ма­ет от­ри­ца­тель­ные зна­че­ния при x при­над­ле­жит левая квад­рат­ная скоб­ка 10; 14 пра­вая квад­рат­ная скоб­ка .

7.  Гра­фик функ­ции сим­мет­ри­чен от­но­си­тель­но оси абс­цисс.

 

Ответ за­пи­ши­те в виде по­сле­до­ва­тель­но­сти цифр в по­ряд­ке воз­рас­та­ния. На­при­мер: 123.

15.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 2 умно­жить на левая круг­лая скоб­ка ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 5 ко­рень из 5 конец ар­гу­мен­та минус ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 36 ко­рень из 6 конец ар­гу­мен­та пра­вая круг­лая скоб­ка : левая круг­лая скоб­ка ко­рень из 5 плюс ко­рень из 6 пра­вая круг­лая скоб­ка минус 4 ко­рень из: на­ча­ло ар­гу­мен­та: 30 конец ар­гу­мен­та .

16.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 20 ко­си­нус левая круг­лая скоб­ка альфа плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка , если  синус 2 альфа = дробь: чис­ли­тель: 7, зна­ме­на­тель: 25 конец дроби , 2 альфа при­над­ле­жит левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ; Пи пра­вая круг­лая скоб­ка .

17.  
i

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной пи­ра­ми­ды, если длина бис­сек­три­сы ее ос­но­ва­ния равна 3 ко­рень из 3 и плос­кий угол при вер­ши­не 2 арк­тан­генс дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .

18.  
i

Гра­дус­ная мера угла ABC равна 112°. Внут­ри угла ABC про­ве­ден луч BD, ко­то­рый делит дан­ный угол в от­но­ше­нии 1 : 7 (cм. рис.). Най­ди­те гра­дус­ную меру угла 1, если BO  — бис­сек­три­са угла DBC.

19.  
i

На диа­грам­ме по­ка­за­но ко­ли­че­ство всех по­ку­па­те­лей ин­тер­нет-ма­га­зи­на (П) и ко­ли­че­ство по­ку­па­те­лей, со­вер­шив­ших более одной по­куп­ки (ПБ), за пе­ри­од шесть ме­ся­цев (с июля по де­кабрь). Уста­но­ви­те со­от­вет­ствие между во­про­са­ми А−В и от­ве­та­ми 1−6.

Во­прос

A)  В каком ме­ся­це ко­ли­че­ство всех по­ку­па­те­лей было наи­боль­шим?

Б)  В каком ме­ся­це ко­ли­че­ство по­ку­па­те­лей, со­вер­шив­ших более одной по­куп­ки, было 160?

В)  В каком ме­ся­це ко­ли­че­ство по­ку­па­те­лей, со­вер­шив­ших более одной по­куп­ки, со­ста­ви­ло 20% от ко­ли­че­ства всех по­ку­па­те­лей в этом ме­ся­це?

Ответ

1)  Июль

2)  Ав­густ

3)  Сен­тябрь

4)  Ок­тябрь

5)  Но­ябрь

6)  Де­кабрь

 

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер, А1Б1В4.

20.  
i

Из го­ро­да А в город В, рас­сто­я­ние между ко­то­ры­ми 90 км, од­но­вре­мен­но вы­ез­жа­ют два ав­то­мо­би­ля. Ско­рость пер­во­го ав­то­мо­би­ля на 20 км/ч боль­ше ско­ро­сти вто­ро­го, но он де­ла­ет в пути оста­нов­ку на 45 мин. Най­ди­те наи­боль­шее зна­че­ние ско­ро­сти (в км/ч) пер­во­го ав­то­мо­би­ля, при дви­же­нии с ко­то­рой он при­бу­дет в В не позже вто­ро­го.

21.  
i

В че­ты­рех­уголь­ни­ке KMNL, впи­сан­ном в окруж­ность, KM = MN = 6 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та и длины сто­рон KL и LN равны ра­ди­у­су этой окруж­но­сти. Най­ди­те зна­че­ние вы­ра­же­ния S2, где S  — пло­щадь че­ты­рех­уголь­ни­ка KMNL.

22.  
i

Най­ди­те сумму целых ре­ше­ний не­ра­вен­ства  дробь: чис­ли­тель: |6x минус 12| минус |4x минус 18|, зна­ме­на­тель: левая круг­лая скоб­ка x плюс 5 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка конец дроби мень­ше или равно 0.

23.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: минус 7 конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 32 конец ар­гу­мен­та умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 49 конец ар­гу­мен­та минус 7 дробь: чис­ли­тель: ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 64 конец ар­гу­мен­та , зна­ме­на­тель: ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: минус 2 конец ар­гу­мен­та конец дроби .

24.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка дробь: чис­ли­тель: a в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 7 конец дроби пра­вая круг­лая скоб­ка плюс b в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 7 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка конец дроби пра­вая круг­лая скоб­ка : левая круг­лая скоб­ка дробь: чис­ли­тель: b, зна­ме­на­тель: a в сте­пе­ни д робь: чис­ли­тель: 6, зна­ме­на­тель: 7 конец дроби конец дроби } плюс дробь: чис­ли­тель: b в сте­пе­ни д робь: чис­ли­тель: 8, зна­ме­на­тель: 7 конец дроби , зна­ме­на­тель: a конец дроби пра­вая круг­лая скоб­ка , если a  =  76, b  =  8.

25.  
i

Зна­че­ние вы­ра­же­ния  9 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка 6 минус x_0 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка , где x0  — ко­рень урав­не­ния  4 в сте­пе­ни x умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка =36 ко­рень из: на­ча­ло ар­гу­мен­та: 144 в сте­пе­ни левая круг­лая скоб­ка 2 x плюс 9 конец ар­гу­мен­та пра­вая круг­лая скоб­ка , равно ... .

26.  
i

Най­ди­те про­из­ве­де­ние точек ми­ни­му­ма функ­ции  f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: x в сте­пе­ни 4 , зна­ме­на­тель: 4 конец дроби плюс x в кубе минус 14 x в квад­ра­те .

27.  
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния x минус ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 121 конец ар­гу­мен­та = дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 11 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: 2x плюс 22 конец дроби .

28.  
i

Най­ди­те сумму квад­ра­тов кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 15 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 14 минус x пра­вая круг­лая скоб­ка в квад­ра­те =2 минус 2 умно­жить на ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 15 пра­вая круг­лая скоб­ка x.

29.  
i

По пря­мым па­рал­лель­ным путям рав­но­мер­но в про­ти­во­по­лож­ных на­прав­ле­ни­ях дви­жут­ся два по­ез­да: по пер­во­му пути  — ско­рый поезд со ско­ро­стью 86,4 км/ч, по вто­ро­му  — пас­са­жир­ский со ско­ро­стью 57,6 км/ч. По одну сто­ро­ну от путей на рас­сто­я­нии 80 м от пер­во­го пути и 20 м от вто­ро­го рас­тет де­ре­во. Если пре­не­бречь ши­ри­ной пути, то в те­че­ние сколь­ких се­кунд t пас­са­жир­ский поезд, име­ю­щий длину 143 м, будет за­го­ра­жи­вать де­ре­во от пас­са­жи­ра ско­ро­го по­ез­да? В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния 8t.

30.  
i

От­ре­зок BD яв­ля­ет­ся бис­сек­три­сой тре­уголь­ни­ка АВС, в ко­то­ром  дробь: чис­ли­тель: BC, зна­ме­на­тель: AB конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби и  дробь: чис­ли­тель: BC, зна­ме­на­тель: AC конец дроби = дробь: чис­ли­тель: 3, зна­ме­на­тель: 8 конец дроби . По от­рез­ку из точек В и D од­но­вре­мен­но нав­стре­чу друг другу с по­сто­ян­ны­ми и не­рав­ны­ми ско­ро­стя­ми на­ча­ли дви­же­ние два тела, ко­то­рые встре­ти­лись в точке пе­ре­се­че­ния бис­сек­трис тре­уголь­ни­ка АВС и про­дол­жи­ли дви­же­ние, не меняя на­прав­ле­ния и ско­ро­сти. Пер­вое тело до­стиг­ло точки D на 1 ми­ну­ту 11 се­кунд рань­ше, чем вто­рое до­стиг­ло точки В. За сколь­ко се­кунд вто­рое тело про­шло весь путь от точки D до точки В?